Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Investigations into plant–herbivore interactions are of importance for understanding grassland ecosystem dynamics. Our research quantified the effects of vegetation heterogeneity at a patch scale of 30 m on bison space use in a tallgrass prairie through the analyses of the resource utilization function. In addition, we assessed the vegetation heterogeneity associated with bison locations by comparing the patch-scale vegetation characteristics between areas with high and low bison space use through Mann–Whitney U tests. Furthermore, we simulated the interactions between bison and vegetation patches (2 × 2 m) during the early growing season for the lowland topographic positions using agent-based modeling (ABM) as a preliminary study of linking bison foraging site selection with vegetation responses to bison grazing dynamically. The bison grazing strategy in the ABM of the grassland system was adjusted to ensure consistency in the vegetation pattern variations related to bison space use between the simulation and the empirical on-the-ground observations. The results indicated the following: (1) The effects of the patch-scale vegetation heterogeneity on the bison foraging site selection varied across the seasons, which were most evident in the middle of the growing season. (2) A relatively high level of bison space use generally resulted in diverse grassland canopies with high variability and interspersion. (3) From the ABM of the grassland system, it can be implied that bison select patches with high quality and quantity at the beginning of the growing season; as the vegetation quality and quantity improve overall, the bison graze randomly. This pattern was confirmed by observations of the bison foraging site selection in our study site. The ABM proved to be valuable in exploring and elucidating the underlying mechanisms of the grassland dynamics with a native North American grazer.more » « less
-
Invertebrate growth rates have been changing in the Anthropocene. We examine rates of seasonal maturation in a grasshopper community that has been declining annually greater than 2% a year over 34 years. As this grassland has experienced a 1°C increase in temperature, higher plant biomass and lower nutrient densities, the community is maturing more slowly. Community maturation had a nutritional component: declining in years/watersheds with lower plant nitrogen. The effects of fire frequency were consistent with effects of plant nitrogen. Principal components analysis also suggests associated changes in species composition—declines in the densities of grass feeders were associated with declines in community maturation rates. We conclude that slowed maturation rates—a trend counteracted by frequent burning—likely contribute to long-term decline of this dominant herbivore.more » « less
-
Abstract Human induced climate and land‐use change are severely impacting global biodiversity, but how community composition and richness of multiple taxonomic groups change in response to local drivers and whether these responses are synchronous remains unclear. We used long‐term community‐level data from an experimentally manipulated grassland to assess the relative influence of climate and land use as drivers of community structure of four taxonomic groups: birds, mammals, grasshoppers, and plants. We also quantified the synchrony of responses among taxonomic groups across land‐use gradients and compared climatic drivers of community structure across groups. All four taxonomic groups responded strongly to land use (fire frequency and grazing), while responses to climate variability were more pronounced in grasshoppers and small mammals. Animal groups exhibited asynchronous responses across all land‐use treatments, but plant and animal groups, especially birds, exhibited synchronous responses in composition. Asynchrony was attributed to taxonomic groups responding to different components of climate variability, including both current climate conditions and lagged effects from the previous year. Data‐driven land management strategies are crucial for sustaining native biodiversity in grassland systems, but asynchronous responses of taxonomic groups to climate variability across land‐use gradients highlight a need to incorporate response heterogeneity into management planning.more » « less
An official website of the United States government
